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Abstract. Burgers’ equation is known to have wide application and attempts have been 
made in the past to solve the non-homogeneous form of the equation. Because of the 
limitations of the analytical solution for certain values of the parameter v due to slow 
convergence, this paper discusses a numerical approach which uses the method of lines to 
solve the homogeneous case and involves finite Fourier series. The method is attractive as it 
works efficiently and provides good results for v = 1.0 and results with non-increasing 
‘energy’ for v = 0.1. 

1. Introduction 

Historically the homogeneous form of Burgers’ equation, namely 

a u  au  a2u 
- + u - = v y ,  
at ax ax 

where U = u ( x ,  t )  in some domain and v is a parameter, first appeared in a paper by 
Bateman (1915) when he mentioned it as worthy of study and gave a special solution. 
Since then this equation has found applications in fields as diverse as number theory, gas 
dynamics, heat conduction, elasticity, etc. The complete and explicit solution of the 
equation became known in 1950 (see Hopf 1950). Burgers’ equation governs many 
phenomena (approximately) and is therefore of interest. 

In an attempt to analyse the non-homogeneous case Rodin (1970) relates Burgers’ 
partial differential equation to a Riccati ordinary differential equation through a 
similarity transformation. Via this route, he shows that solutions to  the non-homo- 
geneous equation can be obtained. Since then, the numerical method of lines has been 
developed for the solution of nonlinear partial differential equations. 

This approach has been used by Sincovec and Madsen (1975) and tested on Burgers’ 
equation for particular initial and boundary conditions. Roughly speaking, the spatial 
variable x in the time-dependent PDE is discretised, which results in a semi-discrete 
approximating system of ODES. Then ODE methods are used to solve the resulting 
equations to obtain numerical approximations to the original PDE. 

More recently, a simplified Galerkin method has been developed for hyperbolic 
equations by Chin et a1 (1979). They modify a Galerkin method for nonlinear 
hyperbolic equations so that it becomes a simpler method of lines which may be viewed 
as a collocation method. This method has been tested with some success on Burgers’ 
equation for particular initial and boundary conditions. 
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1030 J Caldwell and P Wanless 

We feel that there is much merit in the use of the method of lines, and have 
considered its application involving finite Fourier series. In the method discussed we 
solve a set of ODES for the amplitudes of the sine terms. This provides a neat alternative 
to the method used by Sincovec and Madsen (1975) who solve the set of ODES directly 
from the discretised equations, using a Runge-Kutta technique. 

The method is tested by solving Burgers' equation in an open rectangle where the 
boundary conditions are 

~ ( 0 ,  r )  = u(1, t )  = 0, 

U ( &  0) =f(x), O < x < l .  

t > 0 ,  

and the initial condition is 

The solution is required in 0 < x < 1 for t > 0 and for illustration f(x)  is taken to be 
sin TX. However, the method applies equally well to other choices of initial and 
boundary conditions. 

Good agreement is found for large values of v by comparing the numerical results 
with the analytical results. The method works well for values of v down to 0.1 where the 
analytical formula is not particularly helpful because of slow convergence. This method 
of lines also avoids the stability problems associated with the traditional finite- 
difference techniques. Relevant details of the analytical solution of Burgers' equation 
are contained in the Appendix. 

2. Fourier series approach 

First of all we consider the solution of Burgers' equation analytically, using the method 
of lines. We use the notation u(x, tr) = u(x, rk )  = ur(x) and approximate &/at  by 
(ur+l(x)- u , ( x ) ) / k .  This means that equation (1) can be approximated by 

ur+1- u r  d2Ur+1 dur+l 
ur+1 --. -- - v-- 

k dx dX 
Hence 

Taking r = 0 and letting B = l / v k  gives 

To first order we neglect the nonlinear term (ul /v)(dul /dx)  and use the initial condition 
U" = sin TX. The general solution is 

(4) 
7 

u 1  = Ly e& + p  e-dBx + [ B / ( B  +..')I sin Tx, 

where (Y and p are constants to be determined. 

u(0 ,  t )  = Lf(1, t )  = 0 ,  

On applying the boundary conditions 

t > O ,  

we obtain the first-order approximation 
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Now we iterate by explicitly working out the correction term (ul /v)(dul /dx)  using the 
linear u 1  and the equation resolved. In this way the correction term can be approxi- 
mated by ( r / 2 v )  sin 27rx. This introduces another term into the particular integral, 
namely -[7r/2(4r2 + B ) ]  sin 2 r x .  Therefore to second order the solution is 

(6) 
r 

sin 2 r x .  
B 

U 1  =- + 7 F 2  sin r x  - 
2 ( 4 r 2  + B )  

This process can be repeated to give the approximate solution at higher time steps. 
A more systematic approach would be to use the method of lines involving finite 

Fourier series. The nonlinear terms will generate a solution different from the initial 
condition input. 

Setting l / v  = 4 A  in equation ( 2 )  we obtain 

Imposing the boundary conditions u,(0) = u, ( l )  = 0 ,  and the initial condition u o ( x )  = 
f(x) or some approximation to f (x) ,  leads to a set of nonlinear equations because of the 
nonlinear term. To the same order of accuracy, equation (7) may be replaced by the 
linear system 

d2 U,+ 1 du,. du,+l 2Aur+1 --2Aur-- Bur+l = -Bur ( r  = 0 ,  1, 2,  , , ,). -- 
dx d X  dx 

As in the case of equation (3 ) ,  the solution of equation (8) will require only the 
determination of the particular integral, because of the boundary conditions. 

Assuming the particular integral can be expressed in the form 
M 

ur(x) = 1 cy, sin j r x  
j = l  

M 

U r + l ( X ) =  1 P h  Sin k r x  
h - 1  

we then substitute into equation (8) to 
M M M  

(B+ k 2 r 2 ) p k  sin k7rx + A T  1 1 
k = l  j = l  h = l  

(cy known) 

(9) 
(P  unknown) 

give 

icy,Ph[sin(k + j ) r x  +sin(k - j ) r x ]  

M M  

+ A T  1 k c y j P k [ s i n ( j + k ) r x + s i n ( j - k ) 7 r x ]  
j = l  k = l  

M 
= B 1 cyi sin j r x .  

j = 1  

Equating coefficients of sin i7rx in equation (10)  gives 

( B  + i 2 r 2 ) P ,  + A r i (  k1 cy,-IPf - af-IPf - .!+,Pi) 
M M 

1 = 1  ] = , + I  1 = 1  

= Ba, ( i  = 1 , 2 ,  3 ,  . . . , M ) .  

This means that we have a system of M simultaneous linear equations of the form 

C p = Q  (12)  
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where the (i, j )  coefficient of the matrix C is given by 

Cii = ( l / B ) [ ( B  +i2.rr2)Si, +A.rri(cui-i-cuj-i -a i+j )]  
and 

Lyk = O i f  k G O ,  

Hence we may compute the coefficients pi (i = 1 , 2 , 3 , .  . . , M )  for any order M. 

3. Discussion of results 

As a check on the accuracy at the first time step where t = 0.01, equations ( 5 )  and ( 6 )  are 
evaluated below for the case Y = 1.  Taking k = S t  = 0.01, equations ( 5 )  and ( 6 )  give 

(13)  u ( x ,  0.01) = [ I O O / ( I O O  + 77’11 sin rrx 
and 

(14)  
100 I7 sin 2rrx 

8(.rr2 + 25) u ( x ,  0.01) = loo + r r 2  sin 7Tx - 

respectively. 

an explicit and implicit finite-difference scheme. 
We first compare results from equations (13)  and (14)  with those obtained from both 

An explicit scheme for Burgers’ equation is 
1 

~ i , j + l =  Vs(ui+l,j-2ui.j + ui-l , j)+[l-zsh(Ui+l, ,  -ui-~,j)lui , j  

where ui,i = u( ih ,  j k )  and s = k / h 2 .  Taking Y = 1, h = 0.25, k = 0.01, which means that 
k s h 2 / 2  is satisfied, leads to 

ui, j+l = O . l 6 ( ~ ~ + ~ , ~ - 2 u ~ , ~ +  ~ ~ - ~ , ~ ) + [ l  - 0 . 0 2 ( ~ ~ + 1 , ~  - ui -~ ,~)]u i ,h  

An implicit scheme for Burgers’ equation is 

uj,j+l = ui,i + ~ ~ ( ~ i + l , j + l  -2~i , j+1 + Ui-j,j+l)+~sh(ui+l,j+l -Ui-1,j+l)ui,j+l* 

Here the unknown ui,i+l is involved in a nonlinear expression and therefore we must 
use an iterative solution. Taking Y = 1,  h = 0.25, k = 0.01 as before leads to 

~ i , i + l  = ~ i , i  + O . ~ ~ ( U ~ + I , ~ + ~  -2ui,/+1 + U i - j , j + l  )-0.02(ut+l,j+l - ui-I,j+l )ui,j+l* 

A comparison of the results at the first time step t = 0.01 is then presented in table 1 .  

Table 1. Comparison of results at f = 0.01 where h = 0.25, k = 0.01, v = 1. 

Method ~ ( 0 . 2 5 )  ~ ( 0 . 5 0 )  U (0.75 j 

Lines (1st order) 0.6436 0.9102 0.6436 
Lines (2nd order) 0.6323 0.9102 0.6548 
Explicit 0.6266 0.9062 0.6549 
Implicit 0.6377 0.9142 0.6556 
Analytic 0.6290 0.9057 0.6524 
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Clearly there is reasonable agreement and this suggests that it would certainly be 
worthwhile considering the Fourier series approach with a larger number of terms. 

A computer program which uses a matrix inversion package to invert the matrix C 
has been written for this scheme, and the results obtained for t = 0 (0.01) 0.20 for the 
case v = 1 and M = 4 are presented in table 2. The energy criterion of multiplying 
Burgers’ equation throughout by U and integrating which was suggested by Cole (1951) 
has been included in the computer program and used to monitor the results. These 
results are closer to the analytical results than those obtained by the explicit or implicit 
finite-difference methods discussed earlier, and agree with the analytical results to two 
decimal places even in the M = 4 case over the range t = 0 to 0.20. Further improve- 
ment can be obtained either by using larger M or by using smaller k .  

Table 2. Solutions for the case M = 4 with v = 1, k = 0.01. 

t 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 
0.11 
0.12 
0.13 
0.14 
0.15 
0.16 
0.17 
0.18 
0.19 
0.20 

u(0.25) 

0.6334 
0.5700 
0.5149 
0.4663 
0.4232 
0.3847 
0.3501 
0.3188 
0.2905 
0.2648 
0.2415 
0.2202 
0.2009 
0.1832 
0.1671 
0.1524 
0.1390 
0.1267 
0.1155 
0.1053 

U (0.50) 

0.9100 
0.8278 
0.7531 
0.6851 
0.6233 
0.5671 
0.5161 
0.4696 
0.4274 
0.3890 
0.3540 
0.3222 
0.2932 
0.2669 
0.2429 
0.2211 
0.2012 
0.1832 
0.1667 
0.1517 

~~ ~ 

u(0.75) Energy 

0.6539 
0.6017 
0.5516 
0.5043 
0.4600 
0.4191 
0.3813 
0.3467 
0.3150 
0.2861 
0.2599 
0.2360 
0.2143 
0.1946 
0.1767 
0.1605 
0.1458 
0.1324 
0.1203 
0.1093 

4.0895 
3.3896 
2.8091 
2.3274 
1.9278 
1.5964 
1.3218 
1.0944 
0.9060 
0.7501 
0.6210 
0.5142 
0.4257 
0.3525 
0.2919 
0.2417 
0.2002 
0.1658 
0.1373 
0.1137 

The size of the diagonal term in the coefficient matrix C of equation (12) is given by 
(1/B)(B+i2,ir2--A,iria*,). As B is inversely proportional to the time step and A is 
constant, a value of the time step can always be chosen which ensures diagonal 
dominance in the coefficient matrix C and this provides another possible method of 
solution. 

Up to this stage we have considered the case v = 1. However, smaller values of v 
present much more of a challenge in the solution of Burgers’ equation. For this reason 
results are presented in table 3 for the case v = 0.1, M = 4. 

We have already mentioned that the energy criterion has been used to monitor the 
results, and as can be seen from the results the energy decreases at each step as 
expected, provided v 3 0.1. A decrease in energy as t increases implies that u(x, t )  is 
correct. For v = 0.01 a similar study shows that this method is not satisfactory, as the 
energy appears to increase at each step. For large values of v good results can be 
obtained by using only a few Fourier terms. However, as v becomes smaller the /3 
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Table 3. Solution for the case M = 4 with v = 0.1, k = 0.01 

~ 

t u(0.25) 

0.01 0.6854 
0.02 0.6649 
0.03 0.6455 
0.04 0.6272 
0.05 0.6099 
0.06 0.5935 
0.07 0.5780 
0.08 0.5632 
0.09 0.5493 
0.10 0.5360 
0.11 0.5234 
0.12 0.5 114 
0.13 0.4999 
0.14 0.4890 
0.15 0.4785 
0.16 0.4685 
0.17 0.4589 
0.18 0.4498 
0.19 0.4410 
0.20 0.4325 

~ ( 0 . 5 0 )  

0.9898 
0.9789 
0.9673 
0.9553 
0.9429 
0.9303 
0.9173 
0.9043 
0.8912 
0.8780 
0.8648 
0.8518 
0.8388 
0.8259 
0.8132 
0.8007 
0.7884 
0.7762 
0.7643 
0.7527 

u(0.75) Energy 

0.7153 
0.7 2 2 9 
0.7300 
0.7364 
0.7421 
0.7472 
0.7517 
0.7554 
0.7585 
0.7605, 
0.7626 
0.7637 
0.7642 
0.7641 
0.7634 
0.7621 
0.7603 
0.7581 
0.7553 
0.7522 

0.4842 
0.4757 
0.4678 
0.4605 
0.4537 
0.4473 
0.4412 
0.4353 
0.4297 
0.4243 
0.4189 
0.4137 
0.4085 
0.4034 
0.3 98 2 
0.3930 
0.3878 
0.3825 
0.3772 
0.3718 

coefficients increase in magnitude and therefore a large number of Fourier terms are 
required to obtain the same accuracy. This is clearly demonstrated by examining the 
results in tables 4 and 5. The disadvantage is that a large number of Fourier terms will 
lead to inversion of large matrices. The method of lines certainly enables us to avoid 
stability problems, but this has to be balanced against the introduction of a large 
(v-dependent) matrix which has to be inverted. 

However, by drawing up tables of P k  against time it can be seen from the results at 
each time step that the Fourier coefficients only change by a small amount. This means 
that a process of updating the inverse matrix is possible and would avoid determining 
the inverse of a large matrix from the same starting point at each stage. Therefore we 
feel that this Fourier method is attractive as it works efficiently and provides good 
results. 

Table 4. Computed values of the P coefficients for various values of M for the case v = 0.1, 
t = 0.20 using k = 0.01. 

M 2 4 6 8 

0.7953 0.7952 0.7952 0.7952 

0.0425 0.0425 0.0425 
-0.0129 -0.0123 -0.0123 

0.0036 0.0036 
-0.0011 -0.001 1 

0.0003 
-0.0001 

-0.1685 -0.1598 -0.1598 -0.1598 
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Table 5.  Computed values of the /3 coefficients for various values of M for the case v = 0.01, 
f = 0.20 using k = 0.01. 

M 2 4 6 8 

0.9358 0.9350 0.9349 0.9349 
-0.2864 -0.2607 -0.2605 -0.2605 

0.1067 0.1065 0.1065 
-0.0587 -0.0509 -0.0508 

0.0264 0.0263 

0.0081 
-0.0055 

-0.0169 -0.0143 

In our method the coefficient Pk rapidly became smaller as k increases for large 
values of v ( U  = 1 say), but not so if v is small. This indicates the development of a wave 
front which restricts the value of v because the number of necessary Fourier terms 
becomes large. As already mentioned, the method is unsuitable for Y s 0.01, and the 
solutions indicate that a piecewise polynomial approximation (i.e. finite element) 
should be attempted where the size of the elements should be chosen to take into 
account the nature of the solution. 
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Appendix: analytical solution of Burgers’ equation 

The exact solution of Burgers’ equation under the boundary conditions 

u ( O , t ) = u ( l , t ) = O ,  t > O ,  

and initial condition 

is given by (see Cole 1951) 

2 2  2 r v  E:=, mA, sin m r x  exp(-m UT t )  
Ao+X:=l A ,  cos m r x  exp(-m UT t )  u(x, t )  = 2 2  

where 

1 
v o  

1 

A,,, = 2  lo cos m r x  exp( -1 l x f ( x ’ )  dx’) dx (m = 1 ,2 ,  3 , .  . .), 
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For our case f (x)  = sin TX, 

A ,  = 2 e x p ( - 1 / 2 ~ u ) I , ( l / 2 ~ u )  ( m  = 1 , 2 , 3 , .  * *), 

A .  = e x p ( - 1 / 2 ~ u ) I ~ ( 1 / 2 ~ u ) ,  

where the modified Bessel functions are 
1 

I, (k) = I, cos m m  exp (‘;:) - dx ( m  = 1 , 2 , 3 , .  * .), 

Hence 
2 2  

(A21 
 TU Z,z=1 exp(-m UT t)mIm(1/277u) sin m r x  

U (x, t )  = 2 2  Io(1/27ru)+2 exp(-m UT t ) Im(l /2xu)  cos mrrx 

Provided U is sufficiently large a reasonable approximation is obtained by taking lo = 1, 
Il = 1 / 4 ~ u ,  I2 = I3 = . . . = 0. This leads to the useful approximation 

2 sin T X  exp(-u.rr t )  
1 + ( 1 / 2 ~ u )  cos T x  exp(-uT2t) 

u(x, t ) ^  ’ ( t  >0).  

Note the asymmetry about x = which disappears for large values of t. 
From the definitions of Io and I, much more accurate expressions than equation 

(A3) can be found, For the case U = 1 the leading coefficients to eight decimal places are 
as follows: 

I O  = 1.006 342 61, 
I1 = 0.079 829 68, 
I 2  = 0.003 172 98, 
1 3  = 0.000 084 12, 
1 4  = 0,000 001 67, 
1 5  = 0.000 000 03, 
1 6  =I, = , , , = 0.000 000 00. 

However, for values of U below 1 the convergence of equation ( A l )  is slow, as the 
coefficients I,, drop off much less rapidly than for the U = 1 case. This certainly applies 
for values of U in the region of 0.1. For this reason it is important to consider possible 
efficient and accurate numerical techniques which produce solutions to Burgers’ 
equation for such values of U .  Such a technique, which works well for values of U down 
to 0.1, is discussed in 5 2. 

In the limit as U + 0 equation ( A l )  approaches 
2 2   TU C:=, m sin m m  exp(-m UT t )  

u ( x ,  t )  = 2 2 .  1 + 2  cos mTx exp(-m UT t )  

This is not so worrying, as this result can be simply expressed in terms of the @-functions 
mentioned by Cole (1951). Numerous transformations for these exist, and these can be 
simply used to achieve better ‘convergence’. Hence the difficulties arise not for values 
of U close to zero but for larger values, particularly in the range 0.01 to 1. 
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